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The use of multiple-scattering data to enhance small-angle neutron scattering experiments
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Abstract

Multiple scattering of neutrons by the inhomogeneities
responsible for small-angle neutron scattering (SANS)
during the passage of the beam through the specimen
can be used to provide valuable information about the
shape of the objects and the absolute value of the
contrast between the scattering particles and the matrix.
The neutrons emerging from the specimen are classi®ed
into those that have been scattered n times. The index n
ranges from zero to in®nity. The remnant of the incident
beam is the group of neutrons for which n equals zero.
Each group contributes separately to the scattering
pro®le. The small-angle scattering cross section is
independent of the neutron wavelength for n � 1 only.
Thus collection of data as a function of specimen
thickness and of neutron wavelength will provide a
number of different pro®les describing the same
physical situation. Simultaneous analysis of these
pro®les provides absolute values of the cross section
for scattering into the small-angle region and of the
cross section for removal of neutrons from the small-
angle region. So that the method can be used generally, a
pro®le function that is a very good approximation to
those in the literature is introduced. The implications for
time-of-¯ight SANS are discussed.

1. Introduction

The technique of small-angle scattering involves the
experimental investigation of the strong maximum in
the scattered intensity at a scattering angle close to zero.
When the coherent scattering cross section of the nuclei
in the specimen is nonzero, this re¯ection will always
exist whatever the state of spatial order in the specimen.
It corresponds to the zeroth-order spectrum from a
crystal lattice (James, 1948).

It will be assumed in this analysis that no long-range
order exists in the inhomogeneities under investigation
or in the matrix in which they are immersed. This is
almost always the case in small-angle scattering experi-
ments.

In a SANS experiment, the pro®le of the (0, 0, 0)
re¯ection is measured as a function of the scattering
angle after the incident beam has passed through the
specimen. In the usual SANS data-analysis procedure,

two assumptions are made. The ®rst is that the incident
beam is not depleted in the experiment. This leads to the
simple method of obtaining the SANS scattering by
subtraction of the pattern obtained in an identical
experiment without the specimen (Agamalian et al.,
1997). The second assumption is that of single scattering.
Both these assumptions will always hold for a suf®-
ciently thin specimen or suf®cient degree of dilution of
the entities giving rise to SANS. However, in many cases
in materials science, the degree of dilution is controlled
by the chemistry of the material, and grinding or
polishing to reduce the physical thickness may produce a
specimen that is not representative of the bulk material.
An additional complication is the necessary super-
position of the incident beam on a much less intense
small-angle scattering pro®le. In practice, this means
that the small-angle pro®le can only be seen as wings on
the dominant incident beam. The result is uncertainty in
the interpretation, as the region at low momentum
transfer (the Guinier region) is not accessible to the
experimenter.

In this work, a very different approach is proposed.
The neutrons that emerge from the specimen are clas-
si®ed according to the number of times, n, they have
been scattered during their passage through the
specimen. The values of n range from zero to in®nity.
The remnant of the incident beam is that component for
which n � 0. Depletion of the incident beam during its
passage through the specimen is taken into account.

It will be shown that SANS patterns from specimens
that are of different thickness, but are otherwise iden-
tical, not only provide information on the shape and size
of the scattering entity but also provide absolute values
of the scattering contrast between the particles respon-
sible for SANS and the matrix. No separate calibration
of the incident beam is required. The methods used are
similar to those of Warren (1949), Dexter & Beeman
(1949) and Schelten & Schmatz (1980). The new feature
is the explicit inclusion of the incident beam as a
component of the scattering pro®le.

In the present approach, only interparticle scattering
(which is the analogue of secondary extinction in
conventional crystallography) is considered to be
operative. Weiss (1951) has shown that the criterion for
the use of kinematic diffraction theory is the condition
that the neutron phase shift in traversing a particle is not
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signi®cantly different from the phase shift in travelling
the same distance in a vacuum. This condition is similar
to the criterion for primary extinction in conventional
crystallography (Sabine, 1992) and, in general, kine-
matic theory is adequate for particles less than 1 mm in
size; that is to say that multiple scattering within a
particle of this size can be neglected.

As the thickness of the specimen increases so does the
likelihood that the incident neutron is scattered more
than once. Multiple scattering occurs when the scattered
rays from particles in the layers nearest the incident
surface act as the incident beams for particles in
subsequent layers. In the electron diffraction literature
(Cowley, 1981), this type of scattering is called inco-
herent multiple scattering since there is no phase rela-
tionship between different scattering centres. In neutron
diffraction, incoherent scattering has a well established
and different meaning. The term multiple scattering will
be used in this work. The physical result is a broadening
of the pro®le of the scattered radiation, which, if not
properly taken into account, leads to an underestimate
of the size of the scattering particle. It has been
suggested by Mazumder & Sequira (1989) that this
feature could be used to study large particles from which
the scattering would, under single-scattering conditions,
fall within the incident beam.

The Rietveld method (Rietveld, 1969) is used exten-
sively to re®ne the parameters that contribute to the
intensities of Bragg re¯ections in neutron and X-ray
powder patterns. The philosophy of the method is the
formulation of an expected intensity distribution, Icalc,
from approximate values of the parameters, and the
least-squares re®nement of Icalc against the observed
intensity distribution, Iobs. The variables in the re®ne-

ment are the values of the parameters. A similar
approach can be applied to the analysis of SANS data.

The implication of the wavelength dependence of
multiple scattering in time-of-¯ight SANS experiments
is discussed qualitatively.

2. De®nition of terms

The objective of the experiment is the determination of
the shape, size and composition of the scattering parti-
cles, which are agglomerates of molecules, embedded in
a matrix with different scattering properties. By analogy
with the unit cell of a crystal, the basic structural unit in
this work is taken to be the molecule. As a result, the
coherent scattering length per molecule corresponds to
the conventional F(0) of crystallography. The symbols
used in this work are de®ned in Table 1.

3. Kinematic theory

Within the kinematic theory, the basic equation for the
total intensity of coherent scattering by an assemblage
of nuclei is

I�q� � PNÿ1

j�0

PNÿ1

j0�0

bjb
�
j0 exp�iq � �rj ÿ rj0 ��: �1�

The coherent scattering length is bj. The sum is over all
nuclei (N) in the irradiated volume, and I(q), which is
equal to the coherent differential cross section, is the
scattered intensity per unit incident ¯ux. This equation
can be written for an assemblage of nuclei of scattering
length b (which is assumed to be real) as

I�q� � b2

�
N � PNÿ1 PNÿ1

j0 6�j

exp�iq � �rj ÿ rj0 ��
�
: �2�

In an exact analysis of the scattering by a spherical
particle of radius R containing N nuclei with scattering
length b and a random spatial arrangement, James
(1948) has shown that this expression becomes

I�q� � b2�N � N�N ÿ 1�F�q�2�; �3�
where F(q) is the form factor given by

F�q� � 3�sin�qR� ÿ qR cos�qR��=�qR�3: �4�
Since N is large, N(N ÿ 1) can be replaced by N2 in the
second term of (3) without signi®cant error in this term.
This leads to the standard expression per particle for
scattering into the small-angle region:

I�q� � �NbF�q��2: �5�
While the neglect of the approximation above has a
negligible effect on the evaluation of the small-angle
scattering, it is necessary to include the ®rst term of
equation (30) to account for the removal cross section
for neutrons traversing the specimen. The statement by

Table 1. De®nition of symbols

�0 Flux of the incident beam (neutrons cmÿ2 sÿ1).
R Radius of the particle
Vp Volume of the particle
Nm Number of molecules per unit volume in the particle
No Number of molecules per unit volume in the matrix
bm Coherent scattering length per particle molecule
bo Coherent scattering length per matrix molecule
� Wavelength of the incident radiation
� Angle between the incident and scattered beams
q 4� sin��=2�=�
I0 Differential cross section per unit volume for scattering into

the small-angle region at q � 0
� Total scattering cross section per unit volume for scattering

into the small-angle region
� Total scattering cross section for removal of neutrons

from the small-angle region, both by scattering and by
absorption

� Total cross section for depletion of the incident beam
(� � � �)

�s, �a Conventional scattering and absorption cross sections,
respectively, per molecule

t Thickness of specimen
f Volume fraction of particles in the specimen
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May (1992) implying that the diffuse background
contains only incoherent scattering is incorrect.

To generalize to a particle of Nm molecules per unit
volume, each with scattering length bm, contained in an
extended matrix with No molecules per unit volume,
each of scattering length bo, the amplitude of scattering,
following the method of Krivoglaz (1969), is written as

A�q� � Pall sites

j

bo exp�iq � rj� �
PN;m
m

bm exp�iq � rm�

ÿ PN;m
o

bo exp�iq � ro�:

The intensity per unit volume, A(q)A�(q), for amor-
phous specimens is then given by

I�q� � f Nmb2
m � �1ÿ f �Nob2

o

� f �Nmbm ÿ Nobo�2F�q�2: �6�
For dilute systems, interference between radiation
scattered by nuclei or molecules located in different
particles can be ignored, and if in addition the particles
can take all orientations with equal probability, the
general expression for scattering into the small-angle
region is given by

I�q� � �Vp�Nmbm ÿ Nobo�F�q��2: �7�
It is constructive to examine the limiting values of the

expression for F(q)2, given by equation (4). To ®nd an
expression as qR! 0, the following expansions are
used:

sin x � xÿ x3=3!� x5=5!ÿ . . .

and

cos x � 1ÿ x2=2!� x4=4!ÿ . . . :

Then F�q�2 ! exp�ÿx2=5�. The radius of gyration, Rg,
of a sphere of radius R is given by R2

g � �3=5�R2; hence
F�q�2 ! exp�ÿqR2

g=3�, which is the expression given by
Guinier (see Guinier & Fournet, 1955).

For the limit qR!1, the trigonometrical terms are
replaced by their averages over one cycle. These
averages are hsin2 xi � 1=2, hcos2 xi � 1=2, hsin x cos xi �
0. Then F�q�2 � 9=2�qR�4 and I�q� � 2��Nb�2S=q4,
where S is the surface area of the sphere. This limiting
value is the origin of what is called ``Porod's law'', which
is often incorrectly taken to imply that the scattering at
large q is dependent only on the surface area of the
particle. The appearance of S in the intensity expression
is a consequence of the way in which the limit is taken
and does not re¯ect the diffraction physics of the
process. The scattered intensity is always proportional to
the number of nuclei in the particle.

Calculations of the form factor for particles of shapes
other than spherical have been made (Guinier &
Fournet, 1955). For a rod of length 2R and negligible
cross-section area,

F�q�2 � �S�2qR�=qR� ÿ �sin2�qR�=�qR�2�; �8�
where

S�x� � Rx
0

sin�t�=t dt:

For a disc of radius R and negligible thickness,

F�q�2 � �2=�qR�2��1ÿ J1�2qR�=qR�: �9�

4. The pro®le function

The pro®les predicted by equations (4), (8) and (9)
oscillate because of the trigonometric terms. These
oscillations will be seen in an experiment only if all the
particles have the same shape and size to within a few
percent. This is not often the case and a monotonic
function, which has the same limiting values, is much
more useful in the analysis of experimental data. Similar
reasoning was used by Zachariasen (1945) in a discus-
sion of dynamical X-ray diffraction by thick crystals in
the Laue case.

It is proposed that small-angle scattering data can be
analysed by the expansion of I(q) in powers of the
variable �j , where

�j � 1=�1� �qRj�2=3�1=2: �10�
Rj is a parameter with the dimensions of length speci-
fying an average size or correlation length in the scat-
tering object.

In the Guinier region �q! 0�, �j ! exp�ÿq2R2
j =6�,

while in the Porod region �q!1�, �j ! 31=2=�qRj�.
In Fig. 1 it is shown that integral powers of �j

reproduce the envelope of the classical solutions for the
sphere, the disc and the rod. The variation of F(q)2 with
q is shown for the ®rst, second and fourth powers of �j.
The exact solutions (the full lines) are calculated from
equations (4), (6) and (7).

Fig. 1. A comparison of �j, �
2
j and �4

j [equation (10)] with the exact
solutions for (c) the rod, (b) the disc and (a) the sphere. The exact
solutions are the full lines.
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There are other calculations of the scattering pro®le,
as described in the following two sections.

4.1. The `Swiss cheese' problem

This is a classic problem. The model quoted by the
authors of the original solution (Debye et al., 1957) is `a
distribution of holes of random shape and size in a solid'.
The solution, in the notation of this paper, for the
equivalent of the form factor squared is

F�q�2 � 1=�1� �qa�2�2;
where a is a correlation length which, in the words of the
authors, `measures the grain size in the medium'.

4.2. The fractal solution

It has become common in recent years to use a
solution in which F(q)2 may be proportional to non-
integral powers of q. Using the relations

sin�arctan x� � x=�1� x2�1=2

and

cos�arctan x� � 1=�1� x2�1=2;

it can be shown that the fractal solution for F(q)2 (Sinha
et al., 1984),

F�q�2 � sin��Dÿ 1� arctan�q���
�1� q2�2��Dÿ1�=2�Dÿ 1�q� ; �11�

reduces exactly to the formulae given in this work for
values of D � 2 and D � 3. The quantity � is the
correlation length giving the size of the fractal structure.

For any non-integral value of D between 2 and 3, it is
possible to ®nd a value D0 such that the evaluation of the
expression

F�q�2 � �1� �q��2�ÿ�D0ÿ1� �12�
is very close to that of (11). Fig. 2 shows a comparison
between equations (11) and (12) for D � 2:5 and
D0 � 2:4.

5. The intensity of multiple scattering

There are two cross sections relevant to the calculation
of the extent of multiple scattering. The ®rst is the total
coherent cross section for scattering into the small-angle
region by the particle, which, as noted by Halpern &
Gerguoy (1949) and Dexter & Beeman (1949), is very
much greater than the sum of the coherent cross sections
of the nuclei in the particle.

To evaluate this term, the differential cross section
per particle is written

d�=d
 � �Vp�Nmbm ÿ Nobo��2=�1� �qR�2=3�2: �13�
The integral cross section per particle is found by inte-
gration over the solid angle of 4�,

� � 3�2�Vp�Nmbm ÿ Nobo��2=4�R2: �14�
The coherent cross section per unit volume for scat-
tering into the small-angle region is then given by

� � ���Nmbm ÿ Nobo��2Rf �15�
where f is the volume fraction of particles in the
specimen.

The second, which is the cross section per unit volume
for removal of neutrons from the small-angle region, is
given by

� � f �Nm��sm � �am�� � �1ÿ f ��No��so � �ao��: �16�
The total scattering cross section per molecule, including
both coherent and incoherent scattering, is �s. The
coherent component is the result of the ®rst term in
equation (3) or (6). In calculating the incoherent
component, it is important to note that the true cross
section will lie between the free-atom value and the
bound-atom value. This is particularly important for
molecules containing hydrogen. A detailed discussion is
given by Lovesey (1984).

The total absorption cross section per molecule is �a,
which is directly proportional to the neutron wave-
length.

The total cross section per unit volume for removal of
neutrons from the incident beam is �, which is given by
� � � � �.

6. The probability of multiple scattering

Let Nn be the number of neutrons that have been
scattered n times. The number of neutrons incident on
the specimen is N. In traversing a distance �t within the
specimen, the number of neutrons scattered n times is
increased by the scattering into the small-angle region of
those neutrons that have been previously scattered
(nÿ 1) times. The number of neutrons scattered n times
is decreased by further scattering into the small-angle
region by scattering out of the small-angle region or by
absorption. Then,

Fig. 2. Comparison of the fractal solution [equation (11)] with the
solution predicted by equation (12) for D � 2:5 and D0 � 2:4.
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dNn=dt � �Nnÿ1 ÿ �Nn: �17�
With the boundary conditions No�0� � �0, Nn�0� � 0,
the solution of this equation is

Nn�t� � �0���t�n=n!� exp�ÿ�t�: �18�
The probability that a neutron has been scattered n
times in traversing a specimen of thickness t is Nn�t�=�0.

The angular distribution of all neutrons after the
beam has passed through the target is the probability-
weighted sum of the individual angular distributions
Pn(q):

I�q� � �0 exp�ÿ�t�P1
n�1

���t�n=n!�Pn�q�; �19�

where each Pn is normalized such that

��=2��22�
R4�=�
0

qPn�q� dq � 1: �20�

Normalization ensures that the integrated intensity of
each component in the pro®le is unity.

7. Multiple scattering and the pro®le function

Suppose that the angular distribution of neutrons elas-
tically scattered n times is Pn(q). The probability of
®nding one of these neutrons in an element of solid
angle d
 in the direction (�, ') is Pn(q) d
 with
d
 � sin��� d� d' � ��=2��2q dq d'. After a subse-
quent collision, the momentum transfer of this neutron
is q so that the angular distribution for neutrons scat-
tered (n� 1) times is given by

Pn�1�q� �
R

Pn�q1�P1�qÿ q1� d
1: �21�

The distribution functions Pn(q) are properly normal-
ized angular distribution functions,

R
Pn�q� d
 � 1.

The Fourier transform of Pn is de®ned as
sn�r� �

R
exp�iq � r�Pn�q� d
. If Pn(q) depends only on

the scattering angle �, this simpli®es to

sn�r� � ��=2��22�
R

J0�qr�Pn�q�q dq; �22�
where J0(qr) is the zeroth-order Bessel function.

Using the Faltung theorem for Fourier transforms, the
transform of (21) becomes sn�1�r� � sn�r�s1�r�, which
leads to the general result

sn�r� � �s1�r��n: �23�
The angular distribution of neutrons scattered n times is
then given by the inverse transform

Pn�q� � �2�=��2�1=2��R1
0

J0�qr�s�r�nr dr: �24�

To provide a simple demonstration of the effect of
multiple scattering on the pro®le function, the Gaussian
approximation is used. In this case,

P1�q� � �2�=��2�R2=�� exp�ÿR2q2� �25�
and it is easily found that

Pn�q� � �2�=��2�R2=�n� exp�ÿR2q2=n�; �26�
which shows that after n collisions the observed width of
the pro®le has increased by a factor of n1=2.

A more interesting case is the pro®le function for
identical spheres given by equation (4). The n-fold self-
convolution of this function cannot be found analytically
but can be derived by numerical methods. The results
are shown in Fig. 3. The pro®le function rapidly
approaches (as a function of n) the form given in
equation (10) for �j raised to the sixth power.

When P1(q) is given by a pro®le function of the type
given in equation (10),

P1�q� � �I0=���1� R2q2=3�ÿp: �27�
Determination of the inverse Fourier transforms cannot,
in general, be carried out analytically. By numerical
analysis it is found that Pn(q) can be approximated
closely by

Pn�q� � �I0=�n���1� R2q2=3n��ÿp �28�
after evaluation of the normalization factor in equation
(20).

When p � 3=2, it can be shown that � � 2. For other
values of p, � can be approximated by an empirically
determined function of p, obtained by least-squares
®tting the results from the numerical evaluation of the
inverse transform of s(r)n at different values of n and p.
A good approximation was found to be (see Fig. 4)

��p� � 1:48� 2:37 exp�ÿ3:17�pÿ 1��; �29�

Fig. 3. The effect of self-convolution on the exact pro®le for the sphere.
The cases shown are for sample thickness to neutron mean free path
ratios (d) of 0.001, 1.0 and 5.0. The full line is the pro®le given by
equation (27) with p � 3.
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I�q� ��0 exp�ÿ�t��I0=��
P1
n�1

����t�n=n!n��

� �1� R2q2=3n��ÿp
	
: �30�

The intensity of the unscattered beam is

I0�q� � �0 exp�ÿ�t�P0�q�;
where P0(q) is the angular pro®le of the incident beam
normalized to an integrated intensity of unity. Thus the
angular distribution of all neutrons after the beam has
passed through the target is

I�q� ��0 exp�ÿ�t�
h

P0�q� � �I0=��
P1
n�1

����t�n=n!n��

� �1� R2q2=3n��ÿp
	i
: �31�

Inspection of this equation shows, ®rst, that term-by-
term integration and summation of all terms leads to the
expected result that the integrated intensity in the small-
angle region is depleted only by the term exp�ÿ�t�. The
same conclusion was reached by Dexter & Beeman
(1949). Second, if the ®rst term only under the sum-
mation sign is taken (single scattering), the kinematic
differential scattering cross section of equation (13) is
regained.

8. The total pattern

The total pattern is the sum of the scattered beam, the
incident beam and the diffuse scattering, as follows.

8.1. The scattered beam

The scattered beam into the small-angle region is
given by

I�q� ��0C1 exp�ÿ�t�P1
n�1

����t�n=n!n��

� �1� R2q2=3n��ÿp
	
: �32�

For spheroidal inhomogeneities, C1 � I0=� � 4�R2=3�2.

8.2. The incident beam

The incident beam is given, for a Gaussian incident-
beam pro®le, by

I0�q� � �0C0 exp�ÿ�t� exp�ÿ�bq�2�:
In this equation, C0 � 4�b2=�2 and, in terms of the full
width at half-maximum (qw) of the incident beam on the
q scale, b � 2�ln 2�1=2=qw.

8.3. The diffuse scattering

The diffuse scattering for amorphous systems (both
particles and matrix) is given by

Id�q� � Cd�st;

where Cd � �2=8�2.

9. An example of the use of the multiple-scattering
method

The methods given in this work have been used to
analyse experimental data for hydrated cement paste
collected on the ultra-high-resolution SANS double-
crystal diffractometer at Oak Ridge National Labora-
tory (Agamalian et al., 1997). Since these experiments
represent the commencement of a detailed analysis of
SANS from hydrated and deuterated cement paste, no
conclusions concerning the structure of cement will be
made in the present work.

SANS pro®les from cement paste samples of different
thicknesses are shown in Fig. 5. In these measurements,
the transmitted (unscattered) beam is suf®ciently
narrow for its contribution to the measured SANS
pro®le to be ignored.

With any particular value of �, ®tting equation (32) to
each SANS pro®le separately results in values Ri(�) and
Ai(�) of the parameters R and A, the latter being
de®ned by A � �0C1 exp�ÿ�t� for each sample thick-

Fig. 4. Comparison of the empirical formula for �(p) with the points
obtained by numerical analysis.

Fig. 5. SANS pro®les obtained from four thicknesses of fully hydrated
OPC cement.
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ness ti. Denoting the average value of the Ri values by
�R���, the correct value for � is the value that minimizes
the quantity

�2 �P
i

� �R��� ÿ Ri����2 �33�

so that the correct ®tted R value is R � �R���. The
results, shown in Fig. 6, yield values � � 1:08 mmÿ1 and
�R � 1990 nm.

The value of � can then be obtained from the
corresponding values Ai by using the relation
log�Ai=�0C1� � ÿ�ti, plotting log�Ai=C1� against ti as
shown in Fig. 7. The points can be ®tted with a straight
line, the slope of which is the value of � = 1.2.

To estimate the errors on these parameters, the
calculations are repeated a number of times using values
of Ai and Ri randomly chosen within their error
intervals. This procedure yields R � 1990 (60) nm,
� � 1:0 (1) mmÿ1 and � � 0:14 (2) mmÿ1.

10. Time-of-¯ight SANS

In SANS experiments carried out at spallation neutron
sources, it has become customary to bin the data in steps
of q. Since area detectors are used and a wide spectrum
of neutron wavelengths fall upon the specimen, the
neutrons arriving at a given value of q have a wide
energy spectrum. Because of the details of the experi-

mental arrangement, the bins at low values of q will
receive a relatively greater number of low-energy (long-
wavelength) neutrons.

When the experimental arrangement is such that the
single-scattering approximation holds, this bias is of no
consequence since inspection of equation (31) shows
that the term for which n � 1 is independent of the
neutron wavelength. The subsequent terms contain
powers of the quantity �, which has a strong (�2)
dependence on the neutron wavelength. The qualitative
conclusion is that, while the high-q data may show little
effect of multiple scattering, an assumption that the low-
q data are similarly unaffected is not necessarily valid.

11. Conclusions

Use of the methods discussed in this work leads to an
experimental design in which a number of different
SANS pro®les can be obtained from physically identical
systems. As well as the well known technique of contrast
variation (Jacrot, 1976), patterns can be obtained as a
function of wavelength and of thickness. The situation
becomes similar to that in conventional crystallography,
in which many diffraction pro®les contain different
information about the values of the crystallographic
parameters.

Re®nement of the experimental pro®les against the
predictions of equation (31) will lead to values of p (the
shape of the object), R (the size of the object), � (the
absolute value of the SANS contrast) and � (the
chemical composition of the specimen).

We thank Dr L. P. Aldridge for his support and
helpful discussions during the progress of this work.
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